Abstract
We present a compilation technique that targets realtime applications running on embedded processors with combined dynamic voltage scaling (DVS) and adaptive body biasing (ABB) capabilities. Considering the delay and energy penalty of switching between operating modes of the processor, our compiler judiciously inserts mode switch instructions in selected locations of the code and generates executable binary that is guaranteed to meet the deadline constraint. More importantly, our algorithm runs very fast and comes reasonably close to the theoretical limit of energy optimization using DVS+ABB. At 65 nm technology, we improve the energy dissipation of the generated code by an average of 11.4% under deadline constraints. While our technique's improvement in energy dissipation over conventional DVS is marginal (3%) at 130nm, the average improvement continues to grow to 4.7%, 8.8% and 15.4% for 90nm, 65nm and 45nm technology nodes, respectively. Compared to a recent ILP-based competitor, we improve the runtime by more than three orders of magnitude, while producing improved results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.