Abstract

In this work, cadmium selenide quantum dots (CdSe QDs) with different sizes were synthesized and employed as visible light sensitizers of titania, in comparison with other organic molecules based sensitizers, including the well-known ruthenium complex sensitizer, tris(4,4-dicarboxy-2,2-bipyridyl)ruthenium(II) chloride, phenolic-formaldehyde resin and poly (4-vinylphenol). The different sensitizers are linked to titania via different molecular linkages through self-assemble processes. CdSe QDs adsorbed onto titania via stabilization ligand (mercaptopropionic acid) are more stable and efficient in terms of photocatalytic H2 generation and photocurrent generation. The CdSe QDs with a diameter of 2.5 nm exhibits a strong absorption peak centred at 500 nm (CdSe500) and shows the best photocatalytic performance than other QDs with larger size and organic sensitizers. The turnover number of CdSe500 QDs for H2 generation reaches ca. 9000 after 96 h reaction, with a 0.6% quantum yield under irradiation at 450 nm (light intensity = 35 mW/cm2). During the initial 3.0 h reaction, the turnover numbers of different types of sensitizers are estimated about 4.3, 52.5, 323.2 and 16.5 for phenolic-formaldehyde resin, poly (4-vinylphenol), CdSe500 QDs and ruthenium complex, respectively. These results highlights the advantages of utilizing CdSe QDs as stable visible light sensitizers for solar energy conversion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call