Abstract
Given the limitations of traditional classification methods based on port number and payload inspection, a large number of studies have focused on developing classification approaches that use Transport Layer Statistics (TLS) features and Machine Learning (ML) techniques. However, classifying Internet traffic data using these approaches is still a difficult task because (1) TLS features are not very robust for traffic classification because they cannot capture the complex non-linear characteristics of Internet traffic, and (2) the existing Feature Selection (FS) techniques cannot reliably provide optimal and stable features for ML algorithms. With the aim of addressing these problems, this paper presents a novel feature extraction and selection approach. First, multifractal features are extracted from traffic flows using a Wavelet Leaders Multifractal Formalism(WLMF) to depict the traffic flows; next, a Principal Component Analysis (PCA)-based FS method is applied on these multifractal features to remove the irrelevant and redundant features. Based on real traffic traces, the experimental results demonstrate significant improvement in accuracy of Support Vector Machines (SVMs) comparing to the TLS features studied in existing ML-based approaches. Furthermore, the proposed approach is suitable for real time traffic classification because of the ability of classifying traffic at the early stage of traffic transmission.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.