Abstract

The present study highlights the potentiality of sol–gel synthesized guar gum-graft-poly (acrylamide)/silica (g-GG/SiO2) hybrid nanocomposite toward the rapid removal of toxic reactive blue 4 (RB) and Congo red (CR) dyes from aqueous solution. Various physicochemical characterizations support the feasibility of the functionalized guar gum matrix as efficient template for the formation of homogeneous nanoscale silica particles. The composite demonstrates rapid and superior adsorption efficiency of RB (Qmax: 579.01mgg−1 within 40min) and CR (Qmax: 233.24mgg−1 within 30min) dyes from aqueous environment. Here, the pH driven adsorption process depends strongly on the ionic strength of the salt solution. The adsorption kinetics data predicts that pseudo second-order (surface adsorption) and intraparticle diffusion take place simultaneously. The adsorption equilibrium is in good agreement with the Langmuir isotherm, while the thermodynamics study confirms spontaneous nature of the adsorption process. Desorption study predicts the excellent regenerative efficacy of nanocomposite.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.