Abstract

Diaminopimelic acid is incorporated into the peptidoglycan of Salmonella typhimurium in an efficient and quantitative manner. The amount of DAP incorporated is similar to the number of molecules estimated to exist in the Salmonella cell wall. In contrast, strains of E. coli, including those most used for studies of cell wall synthesis, are much less efficient in the incorporation of diaminopimelic acid. The lysine-requiring strains of E. coli appear to excrete diaminopimelic acid related material during growth and this accounts, in part, for the inefficient incorporation of radioactive diaminopimelic acid into Escherichia strains. In addition, the Escherichia strains are much less permeable to DAP than Salmonella strains. Cysteine and cystine inhibit the incorporation of DAP into the cell and this result suggests that Salmonella uses the cystine uptake system to allow DAP into the cell.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.