Abstract
One major challenge in miRNA-based therapy is to explore facile delivery strategies, which can facilitate the efficient and precise accumulation of intrinsically instable microRNAs (miRNAs) at targeted tumor sites. To address this critical issue, for the first time we demonstrate that a near-infrared (NIR) pulse laser can guide efficient delivery of miRNAs mediated by a NIR-absorbing and photoacoustic active semiconducting polymer (SP) nanocarrier, which can generate photoacoustic radiation force to intravascularly overcome the endothelial barriers. Importantly, we demonstrate an ultrafast delivery of miRNA (miR-7) to tumor tissues under the irradiation of pulse laser in 20 min, showing a 5-fold boosted efficiency in comparison to the traditional passive targeting strategy. The delivered miR-7 acts as a sensitizer of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and synergizes with TRAIL-inducing compound (TIC), leading to sustained TRAIL upregulation for effective tumor suppression in mice. As such, our results indicate that the NIR-absorbing semiconducting polymer-mediated nanocarrier platform can significantly enhance the targeted delivery efficiency of therapeutic miRNAs to tumors, resulting in potent tumor growth inhibition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.