Abstract

AbstractEfficient and photostable ZnS‐passivated CdS:Mn (CdS:Mn/ZnS core/shell) nanocrystals were synthesized using reverse micelle chemistry. CdS:Mn/ZnS core/shell nanocrystals exhibited much improved luminescent properties (quantum yield and photostability) over organically (n‐dodecanethiol‐) capped CdS:Mn nanocrystals. This is the result of effective, robust passivation of CdS surface states by the ZnS shell and consequent suppression of non‐radiative recombination transitions. The dependence of photoluminescence (PL) intensity has been observed as a function of UV irradiation time for both organically and inorganically capped CdS:Mn nanocrystals. Whereas organically capped CdS:Mn nanocrystals exhibit a significant reduction of PL intensity, CdS:Mn/ZnS core/shell nanocrystals exhibit an increased PL intensity with UV irradiation. XPS (X‐ray photoelectron spectroscopy) studies reveal that UV irradiation of CdS:Mn/ZnS nanocrystals in air atmosphere induces the photo‐oxidation of the ZnS shell surface, leading to the formation of ZnSO4. This photo‐oxidation product is presumably responsible for the enhanced PL emission, serving as a passivating layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.