Abstract

This study investigates enhanced electrophosphorescence and its mechanism in poly(N-vinyl carbazole) (PVK): N,N′-diphenyl-N,N′-bis(3-methylphenyl)-[1,1-biphenyl]-4,4′-diamine (TPD)/2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD): fac-tris(2-phenylpyridine)iridium [Ir(ppy) 3] concentration graded bilayer electroluminescence devices. The two layers are partially intermixed at the bilayer interface because the upper layer (composed of Ir(ppy) 3 and PBD) was spun cast from a solvent that slightly swells the bottom layer (composed of PVK and TPD). Moreover, PBD in the upper layer can act as an efficient electron transport layer as well as a hole blocking layer, resulting in greatly enhanced electron–hole recombination. An indium tin oxide (ITO)/3,4-polyethylenedioxythiophene–polystyrenesulfonate (PEDOT)/[PVK:TPD/Ir(ppy) 3:PBD] bilayer/LiF/Al device showed dramatically decreased turn-on and driving voltages, enhanced luminescence efficiency, and narrower emission spectra compared to those of conventional ITO/PEDOT:PSS/[PVK:TPD:Ir(ppy) 3:PBD] blend/LiF/Al devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.