Abstract

We present a hybrid intercalation battery based on a sodium/magnesium (Na/Mg) dual salt electrolyte, metallic magnesium anode, and a cathode based on FeS2 nanocrystals (NCs). Compared to lithium or sodium, metallic magnesium anode is safer due to dendrite-free electroplating and offers extremely high volumetric (3833 mAh cm–3) and gravimetric capacities (2205 mAh g–1). Na-ion cathodes, FeS2 NCs in the present study, may serve as attractive alternatives to Mg-ion cathodes due to the higher voltage of operation and fast, highly reversible insertion of Na-ions. In this proof-of-concept study, electrochemical cycling of the Na/Mg hybrid battery was characterized by high rate capability, high Coulombic efficiency of 99.8%, and high energy density. In particular, with an average discharge voltage of ∼1.1 V and a cathodic capacity of 189 mAh g–1 at a current of 200 mA g–1, the presented Mg/FeS2 hybrid battery delivers energy densities of up to 210 Wh kg–1, comparable to commercial Li-ion batteries and approximat...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call