Abstract

Significantly increased interests have been witnessed for the 2 µm waveband which is considered to be a promising alternative window for fiber and free-space optical communications. However, the less mature device technology at this wavelength range is one of the primary obstacles toward practical applications. In this work, we demonstrate an efficient and high-speed silicon modulator based on carrier depletion in a coupling tunable resonator. A benchmark high modulation efficiency of 0.75 V·cm is achieved. The 3-dB electro-optic bandwidth is measured to be 26 GHz allowing for up to 34 Gbit/s on-off keying modulation with a low energy consumption of ∼0.24 pJ/bit. It provides a solution for the silicon modulator with high-speed and low power consumption in the 2-µm waveband.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.