Abstract

AbstractSurface‐wave information from seismic data can be used for near‐surface analysis, static computation and noise suppression. The multichannel analysis of surface waves method is a useful approach for obtaining the shear wave velocity of the near surface; however, rapidly generating an image of dispersive energy in the presence of coherent noise is a challenge. In this study, we propose the imaging of the dispersive energy of the Rayleigh wave using a spatial smoothing propagation method. In this method, forward and backward spatial smoothing algorithms were used to restore the rank of the covariance matrix in strong coherent noise. Subsequently, an image of the dispersive energy was rapidly generated by the propagation method using a linear operation equivalent to the eigenvalue decomposition. The proposed method was evaluated using both synthetic and field data. The results showed that the method was easy to use and has higher resolution representation, efficiency and noise robustness compared with conventional methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.