Abstract

Cytidine base editor (CBE), which is composed of a cytidine deaminase fused to Cas9 nickase, has been widely used to induce C-to-T conversions in a wide range of organisms. However, the targeting scope of current CBEs is largely restricted to protospacer adjacent motif (PAM) sequences containing G, T, or A bases. In this study, we developed a new base editor termed "nNme2-CBE" with excellent PAM compatibility for cytidine dinucleotide, significantly expanding the genome-targeting scope of CBEs. Using nNme2-CBE, targeted editing efficiencies of 29.0%-55.0% and 17.3%-52.5% were generated in human cells and rabbit embryos, respectively. In contrast to conventional nSp-CBE, the nNme2-CBE is a natural high-fidelity base editing platform with minimal DNA off-targeting detected in vivo. Significantly increased efficiency in GC context and precision were determined by combining nNme2Cas9 with rationally engineered cytidine deaminases. In addition, the Founder rabbits with accurate single-base substitutions at Fgf5 gene loci were successfully generated by using the nNme2-CBE system. These novel nNme2-CBEs with expanded PAM compatibility and high fidelity will expand the base editing toolset for efficient gene modification and therapeutic applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call