Abstract
The synthesis of nonnatural phospholipid, phosphatidylhydroxybutyrate (PB), was firstly introduced by phospholipase D (PLD)-mediated transphosphatidylation of phosphatidylcholine (PC) with sodium γ-hydroxybutyrate (NaGHB) in the aqueous-solid system. Nanoscale silicon dioxide (NSD) was employed as a carrier to provide an "artificial interphase" between PC and PLD. Special attention has been paid to the effect of the PC coverage on the surface area of hybrids of NSD-PC, the PC loading and the yield of PB. Results indicated that the highest PC loading of 98.3% and the highest PB yield of 97.3% were achieved. In addition, the free PLD in the aqueous-solid system showed the greater stability and pH tolerance than that in the traditional liquid-liquid system. The operational stability of free PLD solution was investigated. The yield of PB remained 70.7% after being used for five batches. The authors provide a new idea for drug design and the potential source of PB for medical experiments. PB is a potential drug and may have the excellent performance in the treatment of central nervous system's diseases. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2726, 2019.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.