Abstract

Tubular solid oxide fuel cell (TSOFC) converts a great part of chemical energy within fuel into high-grade waste heat, leading to a decrease in overall fuel efficiency. In this paper, a steady-state hybrid system model based on TSOFC and two-stage annular thermoelectric generator (TATEG) is proposed. Considering various kinds of irreversible effects, mathematical model for the hybrid system is explicitly formulated and verified to guarantee the accuracy. Energetic and exergetic performance indexes of the hybrid system and subsystems are obtained, and the corresponding performance characteristics are revealed. Calculation results display that the power density, energetic and exergetic efficiencies of TSOFC-TATEG hybrid system can be 15.29 %, 11.25 % and 11.25 % higher than that of stand-alone TSOFC, respectively. The power density, energetic efficiency and exergetic efficiency of TSOFC-TATEG hybrid system are all increased by 5.65 % compared to that of TSOFC-ATEG hybrid system. Furthermore, this study reveals that enhancing the performance of the hybrid system is attainable through regulating variables, such as elevated operating temperatures, optimal quantities of thermoelectric elements, appropriate ratios between thermoelectric element numbers, well-considered thermocouple thickness, suitable thermocouple radial width, and the judicious selection of parameters like annular shape or height ratio.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call