Abstract
To date, efforts to generate engineered lung tissue capable of long-term function have been limited by incomplete barrier formation between air and blood and by thrombosis of the microvasculature upon exposure of blood to the collagens within the decellularized scaffold. Improved barrier function and resistance to thrombosis both depend upon the recapitulation of a confluent monolayer of functional endothelium throughout the pulmonary vasculature. This manuscript describes novel strategies to increase cell coverage of the vascular surface area, compared to previous reports in our lab and others, and reports robust production of multiple anticoagulant substances that will be key to long-term function in vivo once additional strides are made in improving barrier function. Rat lung microvascular endothelial cells were seeded into decellularized rat lungs by both the pulmonary artery and veins with the use of low-concentration cell suspensions, pulsatile, gravity-driven flow, and supraphysiological vascular pressures. Together, these strategies yielded 72.44 ± 10.52% endothelial cell nuclear coverage of the acellular matrix after 3-4 d of biomimetic bioreactor culture compared to that of the native rat lung. Immunofluorescence, Western blot, and PCR analysis of these lungs indicated robust expression of phenotypic markers such as CD31 and VE-Cadherin after time in culture. Endothelial-seeded lungs had CD31 gene expression of 0.074 ± 0.015 vs 0.021 ± 0.0023 for native lungs, p = 0.025, and VE-Cadherin gene expression of 0.93 ± 0.22 compared to that of the native lung at 0.13 ± 0.02, p = 0.023. Precursors to antithrombotic substances such as tissue plasminogen activator, prostacyclin synthase, and endothelial nitric oxide synthase were expressed at levels equal to or greater than those of the native lung. Engineered lungs reseeded with endothelial cells were implanted orthotopically and contained patent microvascular networks that had gas exchange function during mechanical ventilation on 100% O2 greater than that of decelluarized lungs. Taken together, these data suggest that these engineered constructs could be compatible with long-term function in vivo when utilized in future studies in tandem with improved barrier function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.