Abstract
In this paper, based on Alternating Direction Multiplier Method (ADMM) and Compressed Sensing (CS), we develop three types of novel convex optimization algorithms for the quantum state estimation and filtering. Considering sparse state disturbance and measurement noise simultaneously, we propose a quantum state filtering algorithm. At the same time, the quantum state estimation algorithms for either sparse state disturbance or measurement noise are proposed, respectively. Contrast with other algorithms in literature, simulation experiments verify that all three algorithms have low computational complexity, fast convergence speed and high estimation accuracy at lower measurement rates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.