Abstract

BackgroundTraditional testing of miscarriage products involved culture of tissue followed by G-banded chromosome analysis; this approach has a high failure rate, is labour intensive and has a resolution of around 10 Mb. G-banded chromosome analysis has been replaced by molecular techniques in some laboratories; we previously introduced a QF-PCR/MLPA testing strategy in 2007. To improve diagnostic yield and efficiency we have now updated our testing strategy to a more comprehensive QF-PCR assay followed by array CGH. Here we describe the results from the last 5 years of service.MethodsFetal tissue samples and products of conception were tested using QF-PCR which will detect aneuploidy for chromosomes 13, 14, 15, 16, 18, 21, 22, X and Y. Samples that were normal were then tested by aCGH and all imbalance >1Mb and fully penetrant clinically significant imbalance <1Mb was reported.ResultsQF-PCR analysis identified aneuploidy/triploidy in 25.6% of samples. aCGH analysis detected imbalance in a further 9.6% of samples; this included 1.8% with submicroscopic imbalance and 0.5% of uncertain clinical significance. This approach has a failure rate of 1.4%, compared to 30% for G-banded chromosome analysis.ConclusionsThis efficient QF-PCR/aCGH strategy has a lower failure rate and higher diagnostic yield than karyotype or MLPA strategies; both findings are welcome developments for couples with recurrent miscarriage.

Highlights

  • Traditional testing of miscarriage products involved culture of tissue followed by G-banded chromosome analysis; this approach has a high failure rate, is labour intensive and has a resolution of around 10 Mb

  • Around 15% of clinically recognized pregnancies end in miscarriage, usually toward the end of the first trimester [1], and approximately 1% of couples suffer from recurrent miscarriage

  • Samples most samples were obtained from miscarriage products with a small number obtained from medical terminations or still births

Read more

Summary

Introduction

Traditional testing of miscarriage products involved culture of tissue followed by G-banded chromosome analysis; this approach has a high failure rate, is labour intensive and has a resolution of around 10 Mb. G-banded chromosome analysis has been replaced by molecular techniques in some laboratories; we previously introduced a QF-PCR/MLPA testing strategy in 2007. Traditional cytogenetic testing of miscarriage products involved culture of chorionic villi or fetal tissue, followed by G-banded chromosome analysis. This approach is labour-intensive and has a significant failure rate, especially when the sample quality is poor; in our laboratory. Interpreting and reporting copy number variants (CNV) detected by aCGH in miscarriage samples is complex, given potential implications for familial testing and future pregnancies, and best practice has yet to be determined

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.