Abstract

The graphene supported platinum nanoclusters was synthesized by an efficient and clean method, in which graphene oxide and Pt ion precursor were reduced by ascorbic acid within one-step process. The obtained Pt nanoclusters attached graphene composite (PtNCs/graphene) was characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS), which can directly show that Pt nanoclusters successfully formed on graphene and well distributed on the edges and wrinkles of graphene sheets. The further electrochemical characterizations including cyclic voltammograms (CV), current–time methods indicated that PtNCs/graphene has significantly higher electrocatalytic activity and stability for methanol electrooxidation compared to the normal Vulcan XC-72 and graphite supported Pt nanoclusters, which will lead a further application as a new electrode material in direct methanol fuel cell (DMFC).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call