Abstract

The recognition of surface shapes using structured light is an important component of many industrial vision systems. The iterative correction algorithm (ICA) for the recognition of cylindrical objects is based upon a predictor-corrector approach which utilizes an initial estimate for the surface parameters, followed by iterative parameter refinement. A predicted passive image is generated using the current surface parameter estimates and significant features are extracted and compared with those in the true passive image. The estimated surface parameters are corrected based upon feature disparities. In this paper, the ICA is enhanced with a new method for computing passive-image point coordinates and tested. Future research directions are indicated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.