Abstract

Puckering of the sugar unit in nucleosides and nucleotides is an important structural aspect that directly influences the helical structure of nucleic acids. The preference for specific puckering modes in nucleic acids can be analyzed via in silico conformational analysis, but the large amount of conformations and the accuracy of the analysis leads to an extensive amount of computational time. In this paper, we show that the combination of geometry optimizations with the HF-3c method with single point energies at the RI-MP2 level results in accurate results for the puckering potential energy surface (PES) of DNA and RNA nucleosides while significantly reducing the necessary computational time. Applying this method to a series of known xeno nucleic acids (XNAs) allowed us to rapidly explore the puckering PES of each of the respective nucleosides and to explore the puckering PES of six-membered modified XNA (HNA and β-homo-DNA) for the first time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.