Abstract

Monitoring protein structure before and after environmental alterations (e.g., different cell states) can give insights into the role and function of proteins. Fast photochemical oxidation of proteins (FPOP) coupled with mass spectrometry (MS) allows for monitoring of structural rearrangements by exposing proteins to OH radicals that oxidize solvent-accessible residues, indicating protein regions undergoing movement. Some of the benefits of FPOP include high throughput and a lack of scrambling due to label irreversibility. However, the challenges of processing FPOP data have thus far limited its proteome-scale uses. Here, we present a computational workflow for fast and sensitive analysis of FPOP data sets. Our workflow, implemented as part of the FragPipe computational platform, combines the speed of the MSFragger search with a unique hybrid search method to restrict the large search space of FPOP modifications. Together, these features enable more than 10-fold faster FPOP searches that identify 150% more modified peptide spectra than previous methods. We hope this new workflow will increase the accessibility of FPOP to enable more protein structure and function relationships to be explored.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.