Abstract

In this paper, A numerical technique, called short-open calibration (SOC), in conjunction with edge-based finite element method (FEM) is employed to analyze millimeter wave circuit that can be segmented into two distinct section: static model of feedlines and dynamic model of circuit discontinuity. The derivation of reflection coefficient of 3D discontinuities is arranged in two steps. In the first step, this SOC technique is incorporated into the FEM for mesh truncation of computaional domain. In this way, much faster convergence is achieved for large-sparse linear matrix equations from FEM by this termination than by perfectly matching layers (PML). The field distribution of the dominated mode in uniform feedlines and entire circuit is obtained individually by exciting a pair of even and odd impressed voltages along the struture. In step two, Scattering parameters based on the voltages and current defintion is calculated by integral of electric and magnetic fields. Numerical solutions for a class of planar circuit discontuities are very well compared with those published in the available literatures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call