Abstract

We present a spectral-domain (SD) technique for the efficient analysis of metasurfaces. The metasurface is modeled by generalized sheet transition conditions (GSTCs) as a zero-thickness sheet creating a discontinuity in the electromagnetic field. The SD expression of these GSTCs for a specified incident field leads to a system of four surface integral equations for the reflected and transmitted fields, which are solved using the method of moments in the spectral domain. Compared to the finite-difference and finite-element techniques that require meshing the entire computational domain, the proposed technique reduces the problem to the surface of the metasurface, hence eliminating one dimension and providing substantial benefits in terms of memory and speed. A monochromatic generalized-refractive metasurface and a polychromatic focusing metasurface are presented as illustrative examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.