Abstract

Efficient solutions to nonpolynomial (NP)-complete problems would significantly benefit both science and industry. However, such problems are intractable on digital computers based on the von Neumann architecture, thus creating the need for alternative solutions to tackle such problems. Recently, a deterministic, continuous-time dynamical system (CTDS) was proposed [1] to solve a representative NP-complete problem, Boolean Satisfiability (SAT). This solver shows polynomial analog time-complexity on even the hardest benchmark $k$ -SAT ( $k \geq 3$ ) formulas, but at an energy cost through exponentially driven auxiliary variables. This paper presents a novel analog hardware SAT solver, AC-SAT , implementing the CTDS via incorporating novel, analog circuit design ideas. AC-SAT is intended to be used as a coprocessor and is programmable for handling different problem specifications. It is especially effective for solving hard $k$ -SAT problem instances that are challenging for algorithms running on digital machines. Furthermore, with its modular design, AC-SAT can readily be extended to solve larger size problems, while the size of the circuit grows linearly with the product of the number of variables and the number of clauses. The circuit is designed and simulated based on a 32-nm CMOS technology. Simulation Program with Integrated Circuit Emphasis (SPICE) simulation results show speedup factors of ~104 on even the hardest 3-SAT problems, when compared with a state-of-the-art SAT solver on digital computers. As an example, for hard problems with $N=50$ variables and $M=212$ clauses, solutions are found within from a few nanoseconds to a few hundred nanoseconds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.