Abstract

Chromium (Cr)-containing wastewater has caused a serious threat to the environment due to its high toxicity and mobility. The traditional Cr removal methods are generally based on an inconvenient two-step process with the first transformation of Cr(VI) to Cr(III) and the consecutive removal of Cr(III) by precipitation. Herein, we demonstrate the efficient all-in-one removal of total Cr through the simultaneous photocatalytic reduction of Cr(VI) to Cr(III) and in-situ fixation of Cr(III) over the nonconjugated polymer engineered ZnIn2S4 (P-ZIS) photocatalyst. By in-situ polyvinylpyrrolidone (PVP) modification of ZIS during the preparation process, the resulted P-ZIS can completely reduce Cr(VI) within 60 min under visible light irradiation. The kinetics of Cr(VI) reduction over P-ZIS is 2.8 times as that of pure ZIS, which is proved to be benefited from the enhanced light absorption, uplifted conduction band for strengthening reducibility, and accelerated charge carrier transfer. Moreover, as compared to ZIS, P-ZIS also exhibits significantly improved in-situ adsorption ability for Cr(III), thus resulting in efficient all-in-one elimination of total Cr within a single system. We show that this polymer engineered strategy could be a facile and versatile protocol for modulating the electronic structure and surface chemistry of the semiconductor photocatalysts towards complete, safe, and cost-efficient removal of Cr.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.