Abstract
The Euclidean Distance Transform is an important computational tool for the processing of binary images, with applications in many areas such as computer vision, pattern recognition and robotics. We investigate the properties of this transform and describe an O(n2) time optimal sequential algorithm. A deterministic EREW-PRAM parallel algorithm which runs in O( log n) time using O(n2) processors and O(n2) space is also derived. Further, a cost optimal randomized parallel algorithm which runs within the same time bounds with high probability, is given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.