Abstract

ABSTRACTThis paper presents some computationally efficient algorithms for online tracking of set points in robust model predictive control context subject to state and input constraints. The nonlinear systems are represented by a linear model along with an additive nonlinear term which is locally Lipschitz. As an unstructured uncertainty, this term is replaced in the robust stability constraint by its Lipschitz coefficient. A scheduled control technique is employed to transfer the system to desired set points, given online, by designing local robust model predictive controllers. This scheme includes estimating the regions of feasibility and stability of the related equilibriums and online switching among the local controllers. The proposed optimisation problems for calculating the regions of feasibility and stability are defined as linear matrix inequalities that can be solved in polynomial time. The effectiveness of the proposed algorithms is illustrated by an example.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.