Abstract
In this work, we focus on high-dimensional single index models with non-Gaussian sensing vectors and generative priors. More specifically, our goal is to estimate the underlying signal from i.i.d. realizations of the semi-parameterized single index model, where the underlying signal is contained in (up to a constant scaling) the range of a Lipschitz continuous generative model with bounded low-dimensional inputs, the sensing vector follows a non-Gaussian distribution, the noise is a random variable that is independent of the sensing vector, and the unknown non-linear link function is differentiable. Using the first- and second-order Stein's identity, we introduce efficient algorithms to obtain estimated vectors that achieve the near-optimal statistical rate. Experimental results on image datasets are provided to support our theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.