Abstract

The recent trend toward deep learning has led to the development of a variety of highly innovative AI accelerator architectures. One such architecture, the Cerebras Wafer-Scale Engine 2 (WSE-2), features 40 GB of on-chip SRAM, making it a potentially attractive platform for latency- or bandwidth-bound HPC simulation workloads. In this study, we examine the feasibility of performing continuous energy Monte Carlo (MC) particle transport on the WSE-2 by porting a key kernel from the MC transport algorithm to Cerebras's CSL programming model. New algorithms for minimizing communication costs and for handling load balancing are developed and tested. The WSE-2 is found to run 130 times faster than a highly optimized CUDA version of the kernel run on an NVIDIA A100 GPU—significantly outpacing the expected performance increase given the difference in transistor counts between the architectures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call