Abstract

We study two fundamental problems concerning the search for interesting regions in sequences: (i) given a sequence of real numbers of length n and an upper bound U, find a consecutive subsequence of length at most U with the maximum sum and (ii) given a sequence of real numbers of length n and a lower bound L, find a consecutive subsequence of length at least L with the maximum average. We present an O( n)-time algorithm for the first problem and an O(n log L) -time algorithm for the second. The algorithms have potential applications in several areas of biomolecular sequence analysis including locating GC-rich regions in a genomic DNA sequence, post-processing sequence alignments, annotating multiple sequence alignments, and computing length-constrained ungapped local alignment. Our preliminary tests on both simulated and real data demonstrate that the algorithms are very efficient and able to locate useful (such as GC-rich) regions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.