Abstract
A hypercube algorithm to solve the list ranking problem is presented. Let n be the length of the list, and let p be the number of processors of the hypercube. The algorithm described runs in time O(n/p) when n= Omega (p/sup 1+ epsilon /) for any constant epsilon >0, and in time O(n log n/p+log/sup 3/ p) otherwise. This clearly attains a linear speedup when n= Omega (p/sup 1+ epsilon /). Efficient balancing and routing schemes had to be used to achieve the linear speedup. The authors use these techniques to obtain efficient hypercube algorithms for many basic graph problems such as tree expression evaluation, connected and biconnected components, ear decomposition, and st-numbering. These problems are also addressed in the restricted model of one-port communication. >
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Parallel and Distributed Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.