Abstract
We present simple and efficient algorithms for computing gcd and cubic residuosity in the ring of Eisenstein integers, Z[zeta] , i.e. the integers extended with zeta , a complex primitive third root of unity. The algorithms are similar and may be seen as generalisations of the binary integer gcd and derived Jacobi symbol algorithms. Our algorithms take time O(n^2) for n bit input. This is an improvement from the known results based on the Euclidian algorithm, and taking time O(n· M(n)), where M(n) denotes the complexity of multiplying n bit integers. The new algorithms have applications in practical primality tests and the implementation of cryptographic protocols. The technique underlying our algorithms can be used to obtain equally fast algorithms for gcd and quartic residuosity in the ring of Gaussian integers, Z[i].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.