Abstract

Consider a matroid where each element has a real-valued cost and a color, red or green; a base is sought that contains q red elements and has smallest possible cost. An algorithm for the problem on general matroids is presented, along with a number of variations. Its efficiency is demonstrated by implementations on specific matroids. In all cases but one, the running time matches the best-known algorithm for the problem without the red element constraint: On graphic matroids, a smallest spanning tree with q red edges can be found in time O( n log n) more than what is needed to find a minimum spanning tree. A special case is finding a smallest spanning tree with a degree constraint; here the time is only O( m + n) more than that needed to find one minimum spanning tree. On transversal and matching matroids, the time is the same as the best-known algorithms for a minimum cost base. This also holds for transversal matroids for convex graphs, which model a scheduling problem on unit-length jobs with release times and deadlines. On partition matroids, a linear-time algorithm is presented. Finally an algorithm related to our general approach finds a smallest spanning tree on a directed graph, where the given root has a degree constraint. Again the time matches the best-known algorithm for the problem without the red element (i.e., degree) constraint.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call