Abstract
This paper presents an improved algorithm for solving the sum of linear fractional functions (SOLF) problem in 1-D and 2-D. A key subproblem to our solution is the off-line ratio query (OLRQ) problem, which asks to find the optimal values of a sequence of m linear fractional functions (called ratios), each ratio subject to a feasible domain defined by O(n) linear constraints. Based on some geometric properties and the parametric linear programming technique, we develop an algorithm that solves the OLRQ problem in O((m+n)log (m+n)) time. The OLRQ algorithm can be used to speed up every iteration of a known iterative SOLF algorithm, from O(m(m+n)) time to O((m+n)log (m+n)), in 1-D and 2-D. Implementation results of our improved 1-D and 2-D SOLF algorithm have shown that in most cases it outperforms the commonly-used approaches for the SOLF problem. We also apply our techniques to some problems in computational geometry and other areas, improving the previous results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.