Abstract
As the substitutes of legacy long-chain per-/polyfluoroalkyl substances (PFASs), short-chain PFASs have been widely detected in the environment. Compared to long-chain PFASs, short-chain PFASs have smaller molecules and are more hydrophilic. Therefore, they are more likely to experience long-distance transport and pose lasting environmental impacts. In this study, Fe-doped (R-Fe) and Cu-doped biochars (R-Cu) were prepared using reed straw biochar (R). The results showed that the PFBA and PFPeA sorption capacities of R-Fe were 25.81 and 43.59 mg g−1, 1.65 and 1.55 times higher than those of R, respectively. The PFBA and PFPeA sorption capacities of R-Cu were 19.34 and 33.69 mg g−1, 1.24 and 1.20 times higher than those of R, respectively. In addition, R, R-Fe, and R-Cu exhibited higher PFBA and PFPeA sorption capacities than the biochars previously reported. The excellent PFAS sorption performances of the biochars were attributed to the highly porous structure of R, which provided rich adsorption sites. Ion-pair sorption, pore filling, electrostatic interaction between the Fe/Cu and cationic groups on biochar and the anionic groups of PFASs, and hydrophobic interaction between the hydrophobic surface of biochar and the fluorinated tails of PFASs were the underlying sorption mechanisms. The biochars presented high removal rates (>86 %) of multiple PFASs (∑PFAS: 350 μg L−1) from synthetic wastewaters, including legacy and emerging PFASs of different chain lengths and with different functional groups. The biochars reported in this study are promising candidate adsorbents for treating waters contaminated with short-chain PFASs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.