Abstract

Radioactive iodine is considered one of the most dangerous radioactive elements in nuclear waste. Therefore, effective capture of radioactive iodine is essential for developing and using nuclear energy to solve the energy crisis. Some materials that have been developed for removing radioactive iodine still suffer from complex synthesis, low removal capacity, and non-reusability. Herein, covalent organic framework (COF)/chitosan (CS) aerogels were prepared using vacuum freeze-drying, and the COF nanoparticles were tightly attached on the green biomass material CS networks. Due to the synergistic effect of both COF and CS, the composite aerogel shows a three-dimensional porous and stable structure in the recycle usage. The COF/CS aerogel exhibits excellent iodine adsorption capacity of 2211.58 mg g−1 and 5.62 g g−1 for static iodine solution and iodine vapor, respectively, better than some common adsorbents. Furthermore, COF/CS aerogel demonstrated good recyclability performance with 87 % of the initial adsorption capacity after 5 cycles. In addition, the interaction between iodine and imine groups, amino groups, and benzene rings of aerogel are the possible adsorption mechanisms. COF/CS aerogel has excellent adsorption properties, good chemical stability, and reusable performance, which is a potential and efficient adsorbent for industrial radioactive iodine adsorption from nuclear waste.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.