Abstract
Covalent organic frameworks (COFs) have promising applications in environmental remediation owing to their precise directional synthesis and superior adsorption ability. However, magnetic COFs with pyridinic N have not been studied as bifunctional materials for the adsorption and catalytic degradation of dyes. Therefore, in this study, a magnetic COF with a pyridinic structure (BiPy-MCOF) was successfully synthesized using a solvothermal method, which exhibited higher methyl orange (MO) removal than other common adsorbents. The best degradation efficiency via the Fenton-like reaction was obtained by pre-adsorbing MO for 3h at pH 3.1. Both adsorption and catalytic degradation resulted in better removal of MO under acidic conditions. The introduction of pyridinic N improved MO adsorption and degradation on BiPy-MCOF. The electrostatic potential (ESP) showed that pyridinic N had a strong affinity for MO adsorption. Density functional theory calculations confirmed the potential sites on MO molecules that may be attacked by free radicals. Possible degradation pathways were proposed based on the experimental results. Moreover, BiPy-MCOF could effectively degrade MO at least four times, and a high degradation efficiency was obtained in other dyes applications. The coupling of adsorption and degradation demonstrated that the as-prepared BiPy-MCOF was an effective material for organic dyes removal from water.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.