Abstract

We derive a technique of robust and efficient adiabatic passage for a driven nonlinear quantum system, describing the transfer to a molecular Bose-Einstein condensate from an atomic one by external fields. The pulse ingredients are obtained by tracking the dynamics derived from a Hamiltonian formulation, in the adiabatic limit. This leads to a nonsymmetric and nonmonotonic chirp. The efficiency of the method is demonstrated in terms of classical phase space, more specifically with the underlying fixed points and separatrices. We also prove the crucial property that this nonlinear system does not have any solution leading exactly to a complete transfer. It can only be reached asymptotically for an infinite pulse area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.