Abstract

Personalized PageRank (PPR) has been successfully applied to various applications. In real applications, it is important to set PPR parameters in an ad-hoc manner when finding similar nodes because of dynamically changing nature of graphs. Through interactive actions, interactive similarity search supports users to enhance the efficacy of applications. Unfortunately, if the graph is large, interactive similarity search is infeasible due to its high computation cost. Previous PPR approaches cannot effectively handle interactive similarity search since they need precomputation or approximate computation of similarities. The goal of this paper is to efficiently find the top-k nodes with exact node ranking so as to effectively support interactive similarity search based on PPR. Our solution is Castanet. The key Castanet operations are (1) estimate upper/lower bounding similarities iteratively, and (2) prune unnecessary nodes dynamically to obtain top-k nodes in each iteration. Experiments show that our approach is much faster than existing approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.