Abstract
Processors and operating systems (OSes) support multiple memory page sizes. Superpages increase Translation Lookaside Buffer (TLB) hits, while small pages provide fine-grained memory protection. Ideally, TLBs should perform well for any distribution of page sizes. In reality, set-associative TLBs -- used frequently for their energy efficiency compared to fully-associative TLBs -- cannot (easily) support multiple page sizes concurrently. Instead, commercial systems typically implement separate set-associative TLBs for different page sizes. This means that when superpages are allocated aggressively, TLB misses may, counter intuitively, increase even if entries for small pages remain unused (and vice-versa). We invent MIX TLBs, energy-frugal set-associative structures that concurrently support all page sizes by exploiting superpage allocation patterns. MIX TLBs boost the performance (often by 10-30%) of big-memory applications on native CPUs, virtualized CPUs, and GPUs. MIX TLBs are simple and require no OS or program changes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.