Abstract

A new ruthenium complex containing a pyridylidene amine-based NNN ligand was developed as a catalyst precursor for formic acid dehydrogenation, which, as a rare example, does not require basic additives to display high activity (TOF ∼10 000 h-1). Conveniently, the complex is air-stable, but sensitive to light. Mechanistic investigations using UV-vis and NMR spectroscopic monitoring correlated with gas evolution profiles indicate rapid and reversible protonation of the central nitrogen of the NNN ligand as key step of catalyst activation, followed by an associative step for formic acid dehydrogenation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.