Abstract

Matrix transpose in parallel systems typically involves costly all-to-all communications. In this paper, we provide a comparative characterization of various efficient algorithms for transposing small and large matrices using the popular symmetric multiprocessors (SMP) architecture, which carries a relatively low communication cost due to its large aggregate bandwidth and low-latency inter-process communication. We conduct analysis on the cost of data sending / receiving and the memory requirement of these matrix-transpose algorithms. We then propose an adaptive algorithm that can minimize the overhead of the matrix transpose operations given the parameters such as the data size, number of processors, start-up time, and the effective communication bandwidth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.