Abstract

The back-propagation algorithm is the most common algorithm in use in artificial neural network research. The standard activation (transfer) function is the logistic function s(x) equals 1/(1 + exp(-x)). The derivative of this function is used in correcting the error signals for updating the coefficients of the network. The maximum value of the derivative is only 0.25, which yields slow convergence. A new family of activation functions is proposed, whose derivatives belong to Sechn (x) family for n equals 1,2,.... The maximum value of the derivatives varies from 0.637 to 1.875 for n equals 1-6, and thus a member of the activation function-family can be selected to suit the problem. Results of using this family of activation functions show orders of magnitude savings in computation. A discrete version of these functions is also proposed for efficient implementation. For the parity 8 problem with 16 hidden units, the new activation function f3 uses 300 epochs for learning when compared to 500,000 epochs used by the standard activation function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.