Abstract
Consider a polynomial with parametric coefficients. We show that the variety of parameters can be represented as a union of strata. For values of the parameters from each stratum, the decomposition of this polynomial into absolutely irreducible factors is given by algebraic formulas depending only on the stratum. Each stratum is a quasiprojective algebraic variety. This variety and the corresponding output are given by polynomials of degrees at most D with D = d′d O(1) where d′, d are bounds on the degrees of the input polynomials. The number of strata is polynomial in the size of the input data. Thus, here we avoid double exponential upper bounds for the degrees and solve a long-standing problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.