Abstract

This article presents time-dependent numerical modeling of V-band relativistic orotron: a high-power microwave generator with a TM03 oscillation mode in an oversized (D/λ ∼ 2.7) electrodynamic structure and diffractive output in the TM02 mode. Single-mode operation of the oscillator is ensured by the cyclotron selection of the working axisymmetric mode, with simultaneous depression of competing non-axisymmetric modes by means of cutting longitudinal slits in the wall of the slow-wave structure. The simulated output microwave power is 350 MW with a power conversion efficiency of 31% when using a 3.6 kA, 310 keV electron beam transported in the 3.9 T magnetic field. The simulation employed 2.5D axisymmetric and 3D Cartesian versions of the KARAT code.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.