Abstract
A novel method for trochoidal flank milling of 3D cavities bounded by free-form surfaces is proposed. Existing 3D trochoidal milling methods use on-market milling tools whose shape is typically cylindrical or conical, and is therefore not well-suited for meeting fine milling tolerances required for finishing of benchmark free-form surfaces like blades or blisks. In contrast, our variational framework incorporates the shape of the tool into the optimization cycle and looks not only for the trochoidal milling paths, but also for the shape of the tool itself. High precision quality is ensured by firstly designing flank milling paths for the side surfaces that delimit the motion space, in which the trochoidal milling paths are further computed. Additionally, the material removal rate is maximized with the cutter–workpiece engagement being constrained under a given tolerance. Our framework also supports multi-layer approach that is necessary to handle deep cavities. The ability and efficacy of the proposed method are demonstrated by several industrial benchmarks, showing that our approach meets fine machining tolerances using only a few trochoidal paths.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.