Abstract

We present a 3D shape retrieval methodology based on the theory of spherical harmonics. Using properties of spherical harmonics, scaling and axial flipping invariance is achieved. Rotation normalization is performed by employing the continuous principal component analysis along with a novel approach which applies PCA on the face normals of the model. The 3D model is decomposed into a set of spherical functions which represents not only the intersections of the corresponding surface with rays emanating from the origin but also points in the direction of each ray which are closer to the origin than the furthest intersection point. The superior performance of the proposed methodology is demonstrated through a comparison against state-of-the-art approaches on standard databases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.