Abstract
This work introduces a three-dimensional (3D) invariant graph-to-string transformer variational autoencoders (VAE) (Vagrant) for generating molecules with accurate density functional theory (DFT)-level properties. Vagrant learns to model the joint probability distribution of a 3D molecular structure and its properties by encoding molecular structures into a 3D-aware latent space. Directed navigation through this latent space implicitly optimizes the 3D structure of a molecule, and the latent embedding can be used to condition a generative transformer to predict the candidate structure as a one-dimensional (1D) sequence. Additionally, we introduce two novel sampling methods that exploit the latent characteristics of a VAE to improve performance. We show that our method outperforms comparable 3D autoregressive and diffusion methods for predicting quantum chemical property values of novel molecules in terms of both sample quality and computational efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.