Abstract

Summary We developed an efficient 3D Finite Element (FE) Controlled Source Electromagnetic (CSEM) simulator in the frequency domain with unstructured tetrahedral meshes using a parallel multithreading direct solver. The new simulator is based on edge finite element and solves the diffusive electric field equation. It shows a speed up of more than an order of magnitude relative to a previous serial version and can solve problems with millions of tetrahedral elements. The simulator is also capable of injecting general distributed current sources to be used for adjoin-field based inversion. The code is benchmarked against a semi-analytical technique using layered media and is demonstrated using a realistic reservoir saturation model obtained with a black oil simulator. The results show that simulations of realistic models with ∼ 3 million tetrahedral elements can be handled effectively in a single node using current “off the shelf” computing components (in this case, 4 processors x 4 cores each, and 128 GB of shared RAM memory).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.