Abstract
This paper presents an efficient 3D face recognition method to handle facial expression and hair occlusion. The proposed method uses facial curves to form a rejection classifier and produce a facial deformation mapping and then adaptively selects regions for matching. When a new 3D face with an arbitrary pose and expression is queried, the pose is normalized based on the automatically detected nose tip and the principal component analysis (PCA) follows. Then, the facial curve in the nose region is extracted and used to form the rejection classifier which quickly eliminates dissimilar faces in the gallery for efficient recognition. Next, six facial regions which cover the face are segmented and curves in these regions are used to map facial deformation. Regions used for matching are automatically selected based on the deformation mapping. In the end, results of all the matching engines are fused by weighted sum rule. The approach is applied on the FRGC v2.0 dataset and a verification rate of 96.0% for ROC III is achieved as a false acceptance rate (FAR) of 0.1%. In the identification scenario, a rank-one accuracy of 97.8% is achieved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.